D bc thats sound like the only resonable answer
D=rt
when biker A catches biker B, the time they've been riding is the same, so
t=t, or d/r=d/r
the rates are 6.4 and 4.7, so
d/6.4=d/4.7
biker B is 34m ahead, so
(d+34)/6.4=d/4.7
multiply both sides by 6.4*4.7:
4.7(d+34)=6.4d
4.7d+=6.4d+159.8
1.7d=159.8
d=94 meters
Another way to think of it is that biker A gains 1.7 meters on B every second (6.4-4.7=1.5), so the time it'll take for him to gain 34 meters is 34/1.7=20 seconds. In that time, biker B travels 4.7*20=94 meters
Answer:
130 km at 35.38 degrees north of east
Explanation:
Suppose the HQ is at the origin (x = 0, y = 0)
So the coordinates of the helicopter after the 1st flight is


After the 2nd flight its coordinate would be:


So in order to fly back to its HQ it must fly a distance and direction of
north of east
Answer:
The distance between the two spheres is 914.41 X 10³ m
Explanation:
Given;
4 X 10¹³ electrons, and its equivalent in coulomb's is calculated as follows;
1 e = 1.602 X 10⁻¹⁹ C
4 X 10¹³ e = 4 X 10¹³ X 1.602 X 10⁻¹⁹ C = 6.408 X 10⁻⁶ C
V = Ed
where;
V is the electrical potential energy between two spheres, J
E is the electric field potential between the two spheres N/C
d is the distance between two charged bodies, m

where;
K is coulomb's constant = 8.99 X 10⁹ Nm²/C²
d = (8.99 X 10⁹ X 6.408 X 10⁻⁶)/0.063
d = 914.41 X 10³ m
Therefore, the distance between the two spheres is 914.41 X 10³ m
Answer: 39.8 μC
Explanation:
The magnitude of the electric field generated by a capacitor is given by:

d is the distance between the plates.
For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.

where A is the area of the plate and ε₀ is the absolute permittivity.
substituting, we get

It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.
radius of the plates of the capacitor, r = 69 cm = 0.69 m
Area of the plates, A = πr² = 1.5 m²
Thus, the maximum charge that can be placed on disks without a spark is:
Q = E×ε₀×A
⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.