Answer:
M au = Fs - M g au = upwards acceleration; Fs = scale reading
Fs = M (au + g) scalar quantities where g is positive downwards and au is positive upwards - Fs is the net force acting on the person
If the acceleration is zero Fs = M g and the scale reads the persons weight
If the elevator is decelerating then au is negative and the scale reading Fs = (g - au) M and the scale reading is less than the weight of the person
Answer:
speed of electrons = 3.25 × m/s
acceleration in term g is 3.9 × g.
radius of circular orbit is 2.76 × m
Explanation:
given data
voltage = 3 kV
magnetic field = 0.66 T
solution
law of conservation of energy
PE = KE
qV = 0.5 × m × v²
v =
v =
v = 3.25 × m/s
and
magnetic force on particle movie in magnetic field
F = Bqv
ma = Bqv
a =
a =
a = 3.82 × m/s²
and acceleration in term g
a =
a = 3.9 × g
acceleration in term g is 3.9 × g.
and
electron moving in circular orbit has centripetal force
F =
Bqv =
r =
r =
r = 2.76 × m
radius of circular orbit is 2.76 × m
Answer:
C
Explanation:
BECAUSE ITS GOING ON AND ON IF ITS NOT CORRECT I WILL VOTE YOU BRAINLEST ON MY QUESTION
Answer:
1. 0.45 s.
2. 4.41 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) = 1 m
Time (t) =?
Velocity (v) =?
1. Determination of the time taken for the pencil to hit the floor.
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.8
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s.
Thus, it will take 0.45 s for the pencil to hit the floor.
2. Determination of the velocity with which the pencil hit the floor.
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 0.45 s.
Final velocity (v) =?
v = u + gt
v = 0 + (9.8 × 0.45)
v = 0 + 4.41
v = 4.41 m/s
Thus, the pencil hit the floor with a velocity of 4.41 m/s
Answer:
B. Mechanical energy= 50J+30J=80J