10^9 giga, 10^6 mega, 10^3 kilo, 10^-3 milli, 10^-6 micro, 10^-9 nano, 10^-12 pico
Potentially they might want centi which is 10^-2
Answer:
1) Periodically check the no stop or NDL time on their computers
2) The dive computer planning mode can be used if available
3) Make use of a dive planning app
4) Check data from the RDP table or an eRDPML
Explanation:
The no stop times information from the computer gives the no-decompression limit (NDL) time allowable which is the time duration a diver theoretically is able to stay at a given depth without a need for a decompression stop
The dive computer plan mode or a downloadable dive planning app are presently the easiest methods of dive planning
The PADI RDP are dive planners based on several years of experience which provide reliable safety limits of depth and time.
A simple rule to bear in mind is that all objects (regardless of their mass) experience the same acceleration when in a state of free fall. When the only force is gravity, the acceleration is the same value for all objects. On Earth, this acceleration value is 9.8 m/s/s.
<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>