Answer:
A morse code alphabet decoder maybe?? I am confused
Explanation:
Answer:
0.405 seconds
Explanation:
Consider the amount of time it takes the block to fall from 53 m up to 14 m above the ground; then consider the amount of time it takes the block to fall from 53 m up to 2 m above the ground.
First, d = (1/2) gt^2 or t= ( 2 d / g)^1/2
= ( 2 × 39 / 9.8)^1/2 = 2.8212 seconds
Then, to fall from 53 down to 2 meters...
d = (1/2) gt^2 or t= ( 2 d / g)^1/2
= ( 2 * 51/ 9.8 )^1/2 = 3.2262 seconds
So the amount of time it takes for the block to fall from 14 m upto 2 m above the ground
3.2262 - 2.8212 = 0.405 seconds
this is how much time there is from when the man sees the block until it hits him. Not much time...
Answer:
Do = density of obect Dw = density of water
Weight of object = V g Do
Weight of water = V g Dw
F = m a = V Do a = V g Do - V g Dw
Acceleration of object = mass * force on object
Do (g - a) = Dw g
Do = Dw ( 1 / (1 - a / g) = 1000 * 1 / (1 - 3.75 / 9.80) kg/m^3
Do = 1441 kg / m^3
If no acceleration then density of object = density of water
Given:
450 grams of water (Tw = 24 C)
Thermal capacity of the beaker = negligible
Q = 0
Tice = 0 C
Tfinal = 8 C
450g * (Tf - Tw) + m_ice * (Tice - Tw) = 0
450g * (8 - 24) + m_ice (0 - 24) = 0
solve for m_ice
Remains the same
Explanation:
According to Gauss's law, the electric flux through a closed surface is proportional to the charge enclosed by the surface. So no matter how big or small we make the surface that encloses the charge, the electric flux remains the same because it only depends on the enclosed charge, not surface area.