Answer:
E. Some charges in the region are positive, and some are negative.
Explanation:
Electric potential is given as;

where;
W is the work done in moving a charge between two points which have a difference in potential
Q is quantity of charge in the given region
If the electric potential at a given point in the region is zero, then sum of the charges in the given region must be equal to zero. For the charges to sum to zero, some will be positive while some will be negative,.
Therefore, the correct statement in the given options is "E"
E. Some charges in the region are positive, and some are negative.
Answer:
The final kinetic energy of the Helium nucleus (alpha particle) after been scattered through an angle of 120° is
8.00 x 10-13J
Explanation:
In Rutherford Scattering experiment, the collision of the helium nucleus with the gold nucleus is an ELASTIC COLLISION. This means that the kinetic energy is conserved ( The same before and after the collision).
Thus, the final kinetic energy of the helium nucleus is the same as initial kinetic energy (8.00 x 10^-13Joules)
Although, the kinetic energy is converted to potential energy in Coulomb's law equation.
That is,
1/2(mv^2) = (K* q1q2)/r
Where m is the mass of helium nucleus, v is its colliding velocity, k is electrostatic constant, q1 is the charge on helium nucleus, q2 is the charge on gold nucleus, r is impact parameter
The mass of this bag of cement in S.I. units (kg) is equal to 0.062 kilograms.
<u>Given the following data:</u>
- Mass of cement = 62 grams.
To calculate the mass of this bag of cement in S.I. units (kg):
<h3>How to convert to
S.I. units.</h3>
In Science, kilograms (kg) is the standard unit of measurement or S.I. units of the mass of a physical object. Thus, we would convert the value of the mass of this bag of cement in grams to kilograms (kg) as follows:
<u>Conversion:</u>
1000 grams = 1 kilograms.
62 grams = X kilograms.
Cross-multiplying, we have:
X = 
X = 0.062 kilograms.
Read more on mass here: brainly.com/question/13833323
At the same speed because it will slow down as it approaches the peak then speed up as it goes down again
it will be going 15m/s when it gets to the same height if we neglect air resistance and the object doesn't hit something
Answer:
The speed stays constant after the force stops pushing.
Explanation:
Speed always stays constant when the force stops pushing it.