Answer:
1) Position time graph
2) Acceleration time graph
3) Velocity time graph
Answer:
3.135 kN/C
Explanation:
The electric field on the axis of a charged ring with radius R and distance z from the axis is E = qz/{4πε₀[√(z² + R²)]³}
Given that R = 58 cm = 0.58 m, z = 116 cm = 1.16m, q = total charge on ring = λl where λ = charge density on ring = 180 nC/m = 180 × 10⁻⁹ C/m and l = length of ring = 2πR. So q = λl = λ2πR = 180 × 10⁻⁹ C/m × 2π(0.58 m) = 208.8π × 10⁻⁹ C and ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m
So, E = qz/{4πε₀[√(z² + R²)]³}
E = 208.8π × 10⁻⁹ C × 1.16 m/{4π8.854 × 10⁻¹² F/m[√((1.16 m)² + (0.58 m)²)]³}
E = 242.208 × 10⁻⁹ Cm/{35.416 × 10⁻¹² F/m[√(1.3456 m² + 0.3364 m²)]³}
E = 242.208 × 10⁻⁹ Cm/35.416 × 10⁻¹² F/m[√(1.682 m²)]³}
E = 6.839 × 10³ Cm²/[1.297 m]³F
E = 6.839 × 10³ Cm²/2.182 m³F
E = 3.135 × 10³ V/m
E = 3.135 × 10³ N/C
E = 3.135 kN/C
Answer:
101.54m/h
Explanation:
Given that the buses are 5mi apart, and that they are both driving at the same speed of 55m/h, rate of change of distance can be determined using differentiation as;
Let l be the be the distance further away at which they will meet from the current points;
#The speed toward each other.

Hence, the rate at which the distance between the buses is changing when they are 13mi apart is 101.54m/h
They are fused in the core of the star due to great pressures and temperatures. They are made all the way through iron. At that point the star dies. If it is a really large star it will become a supernova when it dies, creating all of the elements beyond iron as well, but only in its death. No star can create anything beyond iron in its life cycle
Answer:
1.0 m/s
Explanation:
First, convert to SI units.
0.30 km × (1000 m / km) = 300 m
5.0 min × (60 s / min) = 300 s
Speed is distance divided by time:
300 m / 300 s = 1.0 m/s