You can try them out and see which one works.
a: f(2) = f(1) +6 = 5+6 = 11 . . . . . . not this one
b: f(1) = f(2) -6 = -1-6 = -7 . . . . . . not this one (5 ≠ -7)
c: f(2) = f(1) - 6 = 5 - 6 = -1 . . . . . this gives the right f(2)
d: f(2 = -6(f(1) = -6(5) = -30 . . . . not this one
_____
The appropriate choice is ...
... f(n +1) = f(n) - 6
— — — — —
You can also recognize that the next term is 6 less than the current one, so f(n+1) = f(n) - 6, which corresponds to the 3rd selection.
This problem is a combination of the Poisson distribution and binomial distribution.
First, we need to find the probability of a single student sending less than 6 messages in a day, i.e.
P(X<6)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)
=0.006738+0.033690+0.084224+0.140374+0.175467+0.175467
= 0.615961
For ALL 20 students to send less than 6 messages, the probability is
P=C(20,20)*0.615961^20*(1-0.615961)^0
=6.18101*10^(-5) or approximately
=0.00006181
The answer is b hope it helps
Answer:
Between B and C..
Step-by-step explanation:
I would say between B and C - then the remaining air in the tyre had to be let out.