Answer:
4.47 km
Explanation:
If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.
From Pythagoras theorem
AD² = AE² + ED²

Hence, the van is 4.47 km from its initial point
Answer:



Explanation:
g = Acceleration due to gravity = 
= Angle of slope = 
v = Velocity of child at the bottom of the slide
= Coefficient of kinetic friction
= Coefficient of static friction
h = Height of slope = 1.8 m
The energy balance of the system is given by

The speed of the child at the bottom of the slide is 
Length of the slide is given by


The force energy balance of the system is given by

The coefficient of kinetic friction is
.
For static friction

So, the minimum possible value for the coefficient of static friction is
.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:
no
Explanation:
most psychologists are skeptical of ESP and believe it's not real. There actually more skeptical of ESP than other scientists.
Answer:

Explanation:
First, we are going to calculate the electrical potential in the point middle between the two charges
Remember that the electrical potential can be calculated as:

Where 
and it is satisfy the superposition principle, thus


The electrical potential at 10 cm from charge 1 is:


Since the work - energy theorem, we have:

where q is the electron's charge and m is the electron's mass
Therefore:

