1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
5

Prove(show) ''T=2π√(l/g)''​

Physics
1 answer:
Nonamiya [84]3 years ago
6 0

Answer:

Time period for Simple pendulum, T=2\pi\sqrt{\frac{l}{g}

Explanation:

The Simple Pendulum

Consider a small bob of mass m is tied to extensible string of length l that is fixed to rigid support. The bob is oscillating in the plane about verticle.

       Let \theta is the angle made by string with vertical  during oscillation.

Vertical component of the force on bob, F=-mg\sin\theta

Negative sign shows that its opposing the motion of bob.

Taking \theta as very small angle then, \sin\theta\sim\theta

F=-mg\theta    

Let x is the displacement made by bob from its mean position ,

then, \theta=\frac{x}{l}

so, F=-mg\frac{x}{l}                ........(1)

Since, pendulum is in hormonic motion,

as we know, F=-kx

where k is the constant and k=m\omega^{2}

F=-m\omega^2x                   .........(2)

From equation (1) and (2)

-m\omega^2x=-mg\frac{x}{l}

\omega=\sqrt{\frac{g}{l}}

Since, \omega=\frac{2\pi}{T}

\frac{2\pi}{T}=\sqrt{\frac{g}{l}

T=2\pi\sqrt{\frac{l}{g}}

You might be interested in
A moving van travels 10km North, then 4 km east, drops off some furniture and then drives 8 km south. (a) Sketch the path of the
Juli2301 [7.4K]

Answer:

4.47 km

Explanation:

If we draw the path of the van then we get a shape with two exposed points A and D. If we draw a line from point D perpendicular to BA we get point E. This gives us a right angled triangle ADE.

From Pythagoras theorem

AD² = AE² + ED²

AD=\sqrt{AE^2+ED^2}\\\Rightarrow AD=\sqrt{2^2+4^2}\\\Rightarrow AD=\sqrt{20}\\\Rightarrow AD=4.47\ km

Hence, the van is 4.47 km from its initial point

3 0
2 years ago
The height of a typical playground slide is about 1.8 m and it rises at an angle of 30 ∘ above the horizontal.
Salsk061 [2.6K]

Answer:

5.94\ \text{m/s}

1.7

0.577

Explanation:

g = Acceleration due to gravity = 9.81\ \text{m/s}^2

\theta = Angle of slope = 30^{\circ}

v = Velocity of child at the bottom of the slide

\mu_k = Coefficient of kinetic friction

\mu_s = Coefficient of static friction

h = Height of slope = 1.8 m

The energy balance of the system is given by

mgh=\dfrac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}\\\Rightarrow v=\sqrt{2\times 9.81\times 1.8}\\\Rightarrow v=5.94\ \text{m/s}

The speed of the child at the bottom of the slide is 5.94\ \text{m/s}

Length of the slide is given by

l=h\sin\theta\\\Rightarrow l=1.8\sin30^{\circ}\\\Rightarrow l=0.9\ \text{m}

v=\dfrac{1}{2}\times5.94\\\Rightarrow v=2.97\ \text{m/s}

The force energy balance of the system is given by

mgh=\dfrac{1}{2}mv^2+\mu_kmg\cos\theta l\\\Rightarrow \mu_k=\dfrac{gh-\dfrac{1}{2}v^2}{gl\cos\theta}\\\Rightarrow \mu_k=\dfrac{9.81\times 1.8-\dfrac{1}{2}\times 2.97^2}{9.81\times 0.9\cos30^{\circ}}\\\Rightarrow \mu_k=1.73

The coefficient of kinetic friction is 1.7.

For static friction

\mu_s\geq\tan30^{\circ}\\\Rightarrow \mu_s\geq0.577

So, the minimum possible value for the coefficient of static friction is 0.577.

8 0
2 years ago
Scenario 3Starting at rest, a 3 kg ball is dropped from the side of a bridge and strikes the ground below at 35m/s. What is the
Nonamiya [84]

   The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.

<h3>How can the height of a dropped ball be determined?</h3>

    Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.

   A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.

    The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.

To Learn more About potential energy, Refer:

brainly.com/question/14427111

#SPJ10

4 0
1 year ago
Does most psychologists believe that ESP exist
vodomira [7]

Answer:

no

Explanation:

most psychologists are skeptical of ESP and believe it's not real. There actually more skeptical of ESP than other scientists.

6 0
3 years ago
Two stationary positive point charges, charge 1 of magnitude 3.90 nC and charge 2 of magnitude 1.80 nC, are separated by a dista
soldi70 [24.7K]

Answer:

v = 7793150 m/s

Explanation:

First, we are going to calculate the electrical potential in the point middle between the two charges

Remember that the electrical potential can be calculated as:

v = \frac{kQ}{r}

                 Where     k = 8.9874 x 10^{9} \frac{Nm^{2} }{C^{2} }

and it is satisfy the superposition principle, thus

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.23} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.23}

v = 222.73v

The electrical potential at 10 cm from charge 1 is:

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.1} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.36}

v = 395.44 v

Since the work - energy theorem, we have:

q\Delta v = \frac{mv^{2} }{2}

                     where q is the electron's charge and m is the electron's mass

Therefore:

v = \sqrt{\frac{2q\Delta v}{m} }

v = 7793150 m/s

6 0
2 years ago
Other questions:
  • A 0.5 kg stone is raised from 1m to 2m height from the ground. what is the change in potential energy of the stone?
    8·1 answer
  • How do coal deposits found in the U.S. and Serbia help prove the theory of continental drift?
    5·1 answer
  • The sticky substances in cigarettes that coat the lining of the<br> lungs are _____.
    10·2 answers
  • When a mass of 24 g is attached to a certain spring, it makes 21 complete vibrations in 3.3 s. What is the spring constant of th
    7·1 answer
  • What helps determine how easily magma flows?
    6·1 answer
  • What do you expect the enclosed current is for a bar magnet?
    6·1 answer
  • How many layers of data can a DVD store?<br> 3<br> 2<br> 4<br> 1<br> 1
    9·1 answer
  • WILL GIVE BRAINLIEST AND 24PTS
    10·2 answers
  • Which describes a characteristic of metallic bonds?
    13·1 answer
  • Select the correct answer.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!