Answer:
The velocity of the plane at take off is 160 m/s.
The distance travel by the plane in that time is 3200 meter.
Explanation:
Given:
Acceleration, a = 4 m/s²
Time, t = 40 s
u = 0 i .e initial velocity
To Find:
velocity , v = ?
distance , s =?
Solution:
we have first Kinematic equation
v = u + at
∴ v = 0 + 4×40
∴ v = 160 m/s
Now by Third Kinematic equation

∴ s = 0 + 0.5 × 4× 40²
∴ s = 3200 meter
Answer:
magnitude of force on charge 2Q = 
Direction of force on charge = 61 ⁰
Explanation:
The magnitude on the force on the charge can be evaluated by finding the net force acting on the charge 2Q i.e x-component of the net force and the y-component of the net force
║F║ =
= after considering the forces coming from Q, 3Q and 4Q AND APPLYING COULOMBS LAW
magnitude of force acting on 2Q = 
The direction of the force on charge 2Q is calculated as
tan ∅ =
= 1.8284
therefore ∅ =
1.8284
= 61⁰
Answer:
6 N
Explanation:
= Mass flow rate = 1 kg/s
v = Final velocity = 6 m/s
u = Initial velocity = 0 m/s
Force is obtained when we divide change in momentum by time

The force the person exert on the extinguisher in order to prevent it from accelerating is 6 N
Answer:
It's impossible for an ideal heat engine to have non-zero power.
Explanation:
Option A is incomplete and so it's possible.
Option B is possible
Option D is related to the first lae and has nothing to do with the second law.
Hence, the correct option is C.
The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.
We can also stat the second law of thermodynamics in this manner;
It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.
This statement is known as second form or Clausius statement of the second law.
Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.
The mass of 1.0 l of water in grams is 1,000 g ;)