Answer:
Democritus
Explanation:
Democritus was a Greek philosopher who was the first person to use the term atom . However ,John Dalton was the first to adapt Democritus’ theory into the first modern atomic
model
Question is missing. Found on google:
<em>"Part A What is the acceleration of the ball? Express your answer to two significant figures and include the appropriate units. </em>
<em>Part B
</em>
<em>What is the net force on the ball during the hit? </em>
<em>Express your answer to two significant figures and include the appropriate units."</em>
Solution:
A) 
The acceleration of the ball is given by

where
v = 12 m/s is the final velocity
u = 0 is the initial velocity (the ball is stationary)
t = 2.0 ms = 0.002 s is the time of contact
Substituting,

B) 
The force on the ball can be found by using Newton's second law:

where
m = 140 g = 0.14 kg is the mass of the ball
is the acceleration
Substituting,

<span><u>_Award brainliest if helped! </u>
B It’s a physical change because the water and the salt kept their original properties.</span>
Answer:
The correct option is;
B) No, the Navy vessel is slower
Explanation:
The speed of some torpedoes can be as high as 370 km/h. The average speed of a fast Navy vessel is approximately 110 km/h
Therefore, the torpedoes travel approximately 3 times as fast as the (slower) Navy vessel, such that the torpedo covers three times the distance of the Navy vessel in the same time and therefore, if the Navy vessel and the torpedo continue in a straight line (in the same direction) due north the vessel can not outrun the torpedo
Therefore, no the Navy vessel travels slower than a torpedo.
<u>Answer</u>:
The coefficient of static friction between the tires and the road is 1.987
<u>Explanation</u>:
<u>Given</u>:
Radius of the track, r = 516 m
Tangential Acceleration
= 3.89 m/s^2
Speed,v = 32.8 m/s
<u>To Find:</u>
The coefficient of static friction between the tires and the road = ?
<u>Solution</u>:
The radial Acceleration is given by,




Now the total acceleration is
=>
=>
=>
=>
The frictional force on the car will be f = ma------------(1)
And the force due to gravity is W = mg--------------------(2)
Now the coefficient of static friction is

From (1) and (2)


Substituting the values, we get

