Answer:
c. The temperature at which a glass transforms from a solid to liquid.
Explanation:
The glass transition temperature is said to be a temperature range when a polymer structure transition from a glass or hardy(solid) material to a rubber like or viscous liquid material.
The glass transition temperature is an important property that is critical in product design.
Fe and S are both reactants: they react with each other to give a different compound.
FeS is the product of the reaction: it was formed or produced as result of the reaction of Fe and S.
Answer:
Fe: reactant
S: reactant
FeS: product
The said development of the cell where the three cell layers help out do it is called as Gastrulation. The three layers - called as ectoderm, endoderm, and mesoderm - tend to form as this happens. This is a process that's present in all living things except sponges.
Answer:
Tension, T = 2038.09 N
Explanation:
Given that,
Frequency of the lowest note on a grand piano, f = 27.5 Hz
Length of the string, l = 2 m
Mass of the string, m = 440 g = 0.44 kg
Length of the vibrating section of the string is, L = 1.75 m
The frequency of the vibrating string in terms of tension is given by :





T = 2038.09 N
So, the tension in the string is 2038.09 N. Hence, this is the required solution.
Answer:
Explanation:
Given a school bus.
Let say initially the school bus is traveling with speed "v"
Let assume mass of school bus is "m"
Then, the initial kinetic energy is
K.E_initial = ½mv²
Now, if the initial velocity is tripled,
Then, the new velocity is
v_new = 3v.
Note: the mass of the school does not change it is constant
Then, new kinetic energy is
K.E_new = ½m(v_new)²
v_new = 3v
Then,
K.E_new = ½m(3v)²
K.E_new = ½m × 9v²
K.E_new = 9 × ½mv²
Since K.E = ½mv²
Then,
K.E_new = 9 × K.E
So, the new kinetic energy will be 9 times the initial kinetic energy.
So, option D is correct
D. It will be nine times greater.