The car heads east at an average speed of 50 miles per hour from the intersection point towards East. The truck heads east at an average speed of 60 miles per hour from the intersection point towards South.
The distance of car from the intersection point after t hours is
.
The distance of truck from the intersection point after t hours is
.
Since these distances are perpendicular to each other, distance apart d (in miles) at the end of t hours is

Thus the distance apart is 
I would assume it is Oxidation since it would have an impact on metals t hat oxidizes in the weather
Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
Answer:
The y-axis should be labelled as W in Newtons (kg·m/s²)
Explanation:
The given data is presented here as follows;
Mass (kg)
Newtons (kg·m/s²)
3.2
31.381
4.6
45.1111
6.1
59.821
7.4
72.569
9
89.241
10.4
101.989
10.9
106.892
From the table, it can be seen that there is a nearly linear relationship between the amount of Newtons and the mass, as the slope of the data has a relatively constant slope
Therefore, the data can be said to be a function of Weight in Newtons to the mass in kilograms such that the weight depends on the mass as follows;
W(m) in Newtons = Mass, m in kg × g
Where;
g is the constant of proportionality
Therefore, the y-axis component which is the dependent variable is the function, W(m) = Weight of the body while the x-axis component which is the independent variable is the mass. m
The graph of the data is created with Microsoft Excel give the slope which is the constant of proportionality, g = 9.8379, which is the acceleration due to gravity g ≈ 9.8 m/s²
We therefore label the y-axis as W in Newtons (kg·m/s²)