1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
9

2783 and 7283. The value of 2 in _ is _ times the value of two in _. The 2 is the underlined digit.

Mathematics
1 answer:
NARA [144]3 years ago
3 0

The value of 2 in 2783 (2000) is 10 times the value of two in 7283 (200).

Hope this helped!

Nate

You might be interested in
Find all the missing elements:
mrs_skeptik [129]

Answer:

C = 20°

.....................

4 0
2 years ago
Read 2 more answers
Better Products, Inc., manufactures three products on two machines. In a typical week, 40 hours are available on each machine. T
Kaylis [27]

Answer:

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

Step-by-step explanation:

                                Profit $    mach. 1      mach. 2

Product 1     ( x₁ )       30             0.5              1

Product 2    ( x₂ )       50             2                  1

Product 3    ( x₃ )       20             0.75             0.5

Machinne 1 require  2 operators

Machine   2 require  1  operator

Amaximum of  100 hours of labor available

Then Objective Function:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Constraints:

1.-Machine 1 hours available  40

In machine 1    L-H  we will need

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

2.-Machine 2   hours available  40

1*x₁  +  1*x₂   + 0.5*x₃   ≤  40

3.-Labor-hours available   100

Machine 1     2*( 0.5*x₁ +  2*x₂  +  0.75*x₃ )

Machine  2       x₁   +   x₂   +  0.5*x₃  

Total labor-hours   :  

2*x₁  +  5*x₂  +  2*x₃  ≤  100

4.- Production requirement:

x₁  ≤  0.5 *( x₁ +  x₂  +  x₃ )     or   0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

5.-Production requirement:

x₃  ≥  0,2 * ( x₁  +  x₂   +  x₃ )  or    -0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

General constraints:

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

The model is:

z  =  30*x₁  +  50*x₂  +  20*x₃      to maximize

Subject to:

0.5*x₁  +  2*x₂  + 0.75*x₃  ≤  40

1*x₁  +  1*x₂   + 0.5*x₃       ≤  40

2*x₁  +  5*x₂  +  2*x₃        ≤  100

0.5*x₁  -  0.5*x₂  -  0.5*x₃  ≤ 0

-0.2*x₁  - 0.2*x₂ + 0.8*x₃   ≥  0

x₁  ≥   0       x₂    ≥   0       x₃     ≥   0           all integers

After 6 iterations with the help of the on-line solver AtomZmaths we find

z (max)  =  1250 $

x₁  = 25    x₂  =  0   x₃  =  25

6 0
3 years ago
Need help with geometry
ra1l [238]
The answer is x=3 because abt+tbc=abc
3 0
3 years ago
Find the value of x²-8y³-36xy-216 when X=2y-6​
Degger [83]

Answer:

4y²+112y+10

Step-by-step explanation:

not rly sure ya :)

3 0
3 years ago
Evaluate the following integral using trigonometric substitution.
wariber [46]

Answer:

Step-by-step explanation:

1. Given the integral function \int\limits {\sqrt{a^{2} -x^{2} } } \, dx, using trigonometric substitution, the substitution that will be most helpful in this case is substituting x as asin \theta i.e x = a sin\theta.

All integrals in the form \int\limits {\sqrt{a^{2} -x^{2} } } \, dx are always evaluated using the substitute given where 'a' is any constant.

From the given integral, \int\limits {7\sqrt{49-x^{2} } } \, dx = \int\limits {7\sqrt{7^{2} -x^{2} } } \, dx where a = 7 in this case.

The substitute will therefore be   x = 7 sin\theta

2.) Given x = 7 sin\theta

\frac{dx}{d \theta} = 7cos \theta

cross multiplying

dx = 7cos\theta d\theta

3.) Rewriting the given integral using the substiution will result into;

\int\limits {7\sqrt{49-x^{2} } } \, dx \\= \int\limits {7\sqrt{7^{2} -x^{2} } } \, dx\\= \int\limits {7\sqrt{7^{2} -(7sin\theta)^{2} } } \, dx\\= \int\limits {7\sqrt{7^{2} -49sin^{2}\theta  } } \, dx\\= \int\limits {7\sqrt{49(1-sin^{2}\theta)}   } } \, dx\\= \int\limits {7\sqrt{49(cos^{2}\theta)}   } } \, dx\\since\ dx = 7cos\theta d\theta\\= \int\limits {7\sqrt{49(cos^{2}\theta)}   } } \, 7cos\theta d\theta\\= \int\limits {7\{7(cos\theta)}   }}} \, 7cos\theta d\theta\\

= \int\limits343 cos^{2}  \theta \, d\theta

8 0
3 years ago
Other questions:
  • The ________ is the number of square units in the interior of a figure.
    10·1 answer
  • 3/11 divided by 2/9 equals what
    15·2 answers
  • What is y=4/5x+4 in standard form
    12·1 answer
  • 00:00:05
    10·1 answer
  • Can someone pls help me with this question pls NUMBER 6
    8·1 answer
  • Hope has of an hour to play outside and do her homework. She wants to split her time equally between the twe activities much tim
    7·2 answers
  • Can I get some help?
    6·1 answer
  • Find the 7th term of the sequence 1,5/4,25/16
    5·1 answer
  • Please sagot mo to thanks na lang​
    8·1 answer
  • Tom purchased international calling cards before traveling abroad. He bought a 60-minute card for $9.99, a 90-minute card for $1
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!