Answer:
All of them affect the DNA
Explanation:
Chemicals are compounds that can pass through cell membranes and modificate the DNA, elevated temperatures can denaturalize the cell and therefore damage the DNA, ionizing radiation can pass through cell organelles and reach the nucleus affecting the DNA, and viruses inject its DNA into the genome and modify it.
Answer:
Only one—(i), or (ii), or (iii)—increases the reaction rate.
Explanation:
<em>Which of the following changes always leads to an increase in the rate constant for a reaction?</em>
- <em>Decreasing the temperature. </em>NO. A lower temperature leads to a slower reaction because the molecules have less energy to react.
- <em>Decreasing the activation energy</em>. YES. According to the Arrhenius equation, the lower the activation energy, the higher the rate constant.
- <em>Making the value of ΔE more negative</em>. NO. A more negative ΔE means a reaction is more spontaneous but not faster.
Answer:
Disposing of the discarded chemicals can be done by certain sfae methods mention as follows:
Explanation:
Most of the chemical wastes are dispose through the EHS waste program. Organic chemicals and solvents that can not be drain should be closed in a tight fitted container that has label on it as Hazardous waste, including strong acid and corrosive liquids.
Recycling of these chemicals and incineration is also use for the industrial chemical waste under professional guidance. Incineration is the process of burning chemicals in to ash through high thermal burning.
Explanation:
The two half equations are;
3e + HNO3 → NO
S→ H2SO4 + 6e
When balancing half equations, we have to make sure the number of electrons gained is equal to the number of electrons lost.
<em>Which factor will you use for the top equation?</em>
We multiply by 2 to make the number of electrons = 6e
<em>Which factor will you use for the bottom equation?</em>
We multiply by 1 to make the number of electrons = 6e