AWhich of the following would most likely cause a decrease in the quantity supplied? A decrease in price.
Answer:
36 N
Explanation:
Velocity of a standing wave in a stretched string is:
v = √(T/ρ),
where T is the tension and ρ is the mass per unit length.
300 m/s = √(T / 4×10⁻⁴ kg/m)
T = 36 N
Answer:
Explanation:
(ΔK + ΔUg + ΔUs + ΔEch + ΔEth = W)
ΔK is increase in kinetic energy . As the athelete is lifting the barbell at constant speed change in kinetic energy is zero .
ΔK = 0
ΔUg is change in potential energy . It will be positive as weight is being lifted so its potential energy is increasing .
ΔUg = positive
ΔUs is change in the potential energy of sportsperson . It is zero since there is no change in the height of athlete .
ΔUs = 0
ΔEth is change in the energy of earth . Here earth is doing negative work . It is so because it is exerting force downwards and displacement is upwards . Hence it is doing negative work . Hence
ΔEth = negative .
b )
work done by athlete
= 400 x 2 = 800 J
energy output = 800 J
c )
It is 25% of metabolic energy output of his body
so metalic energy output of body
= 4x 800 J .
3200 J
power = energy output / time
= 3200 / 1.6
= 2000 W .
d )
1 ) Since he is doing same amount of work , his metabolic energy output is same as that in earlier case .
2 ) Since he is doing the same exercise in less time so his power is increased . Hence in the second day his power is more .
Answer:
The correct option is A = 1960 N/m²
Explanation:
Given that,
Mass m= 20,000kg
Area A = 100m²
Pressure different between top and bottom
Assume the plane has reached a cruising altitude and is not changing elevation. Then sum the forces in the vertical direction is given as
∑Fy = Wp + FL = 0
where
Wp = is the weight of the plane, and
FL is the lift pushing up on the plane.
Let solve for FL since the mass of the plane is given:
Wp + FL = 0
FL = -Wp
FL = -mg
FL = -20,000× -9.81
FL = 196,200N
FL should be positive since it is opposing the weight of the plane.
Let Equate FL to the pressure differential multiplied by the area of the wings:
FL = (Pb −Pt)⋅A
where Pb and Pt are the static pressures on bottom and top of the wings, respectively
FL = ∆P • A
∆P = FL/A
∆P = 196,200 / 100
∆P = 1962 N/m²
∆P ≈ 1960 N/m²
The pressure difference between the top and bottom surface of each wing when the airplane is in flight at a constant altitude is approximately 1960 N/m². Option A is correct