Answer:
42.11 years old
Explanation:
Given that:
In 2000, a 20-year-old astronaut left Earth to explore the galaxy; her spaceship travels at 2.5 x 10^8 m/s. She returns in 2040
To find her age we use:

Δtm is time interval for the observer stationary relative to the sequence of
events = 2040 - 2000 = 40 years
Δts is is the time interval for an observer moving with a speed v relative to the sequence of event
v = velocity = 2.5 x 10^8 m/s
c = speed of light = 3 x 10^8 m/s

Here age in 2000 is 20 year, therefore when she appear she would be 20 year + 22.11 year = 42.11 years old
Answer:
The work done on the hose by the time the hose reaches its relaxed length is 776.16 Joules
Explanation:
The given spring constant of the of the spring, k = 88.0 N/m
The length by which the hose is stretched, x = 4.20 m
For the hose that obeys Hooke's law, and the principle of conservation of energy, the work done by the force from the hose is equal to the potential energy given to the hose
The elastic potential energy, P.E., of a compressed spring is given as follows;
P.E. = 1/2·k·x²
∴ The potential energy given to hose, P.E. = 1/2 × 88.0 N/m × (4.20 m)²
1/2 × 88.0 N/m × (4.20 m)² = 776.16 J
The work done on the hose = The potential energy given to hose, P.E. = 776.16 J
On Jupiter, C. your weight would increase by a factor of 2.4 . Weight is a product of mass and gravity. Mass does not change dependent upon location.