Answer:
5.77 L
Solution:
Data Given:
Moles = n = 0.24 mol
Temperature = T = 35 °C + 273 = 308 K
Pressure = P = 1.05 atm
Volume = V = ?
Formula Used:
Let's assume that the hydrogen gas in balloon is acting as an Ideal gas, the according to Ideal Gas Equation,
P V = n R T
where; R = Universal Gas Constant = 0.082057 atm.L.mol⁻¹.K⁻¹
Solving Equation for V,
V = n R T / P
Putting Values,
V = (0.24 mol × 0.082057 atm.L.mol⁻¹.K⁻¹ × 308 K) ÷ 1.05 atm
V = 5.77 L
Answer: 568g/mol
Explanation:
It should be noted that there are 40 atoms of carbon in lycopene.
Since mass of 1 carbon = 12g/mol
Mass of 40 carbon atoms = 40 × 12g/mol = 480g/mol
Let the molar mass of lycopene be represented by x.
Therefore the molar mass of carbon = x × mass percent of carbon in lycopene
x × 84.49% = 480g/mol
x × 0.8449 = 480g/mol
x = 480/0.8449
x = 568g/mol
The molar mass of lycopene is 568g/mol
The electron is the only subatomic particle that has a negative charge
Hello, Lindaparker, a spit could form from a rocky headland where prevailing winds would
blow at an angle to the rocky headland, gradually depositing sand and
shingle at that place. A spit is a permanent land form resulting
from marine deposition and wind deposition. It is usually a long and
narrow accumulation of sand or shingle with one joined to the land and
the other end projecting at a narrow angle out into the sea. Salt marshes sometimes form on the sheltered side of a spit.