Answer:
True; When one side of a molecule is electronegative (δ-) and the other side of the
molecule is electropositive (δ+), it is said to have a dipole moment.
Explanation:
A dipole moment exists in a molecule as a result of differences in the electronegativity values between the atoms of the elements involved in the chemical bonding.
When a strogly electronegative atom such as oxygen or chlorine is chemically bonded to a less electronegative or an electropositive atom such as hydrogen, there is an uneven sharing of the electrons involved in the bonding. The more electronegative atoms tends to draw the shared electrons mostly to themselves. This induces a partially negative charge (δ-) on them while leaving the electropositive atoms with a partially positive charge (δ+).
Water is an example of a molecule having a dipole moment. The oxygen atoms are more electronegative than hydrogen and as such draw the shared electrons to themselves more, inducing a partial positive charge (δ+) on the hydrogen atoms while they themselves develop a partial negative charge (δ-).
Buffers in the human body can help to prevent a deadly change in blood pH.
B. compound
source is Glencoe Science book grade 7.
Also I just happening to be learning about this at school
Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!