Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

Answer:
v = 14 m/s
Explanation:
given,
radius of dip = 40 m
The passengers in a roller coaster car feel 50% heavier than their true weight.
Apparent weight



When the car is at the bottom, the weight will be acting downwards and the centripetal force will also be acting downward where as Normal force which is apparent weight will be acting in upward direction.
now,





v = 14 m/s
M/s, km/h, and mph are all used to measure these quantities