<h3><u>Given</u><u>:</u><u>-</u></h3>
Acceleration,a = 3 m/s²
Initial velocity,u = 0 m/s
Final velocity,v = 12 m/s
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the time take by a car.
<h3><u>Solution:-</u><u> </u></h3>
According to the first equation of motion:
v = u + at
★ Substituting the values in the above formula,we get:
⇒ 12 = 0 + 3 × t
⇒ 12 = 3t
⇒ 3t = 12
⇒ t = 12/3
⇒ t = 4 sec
Answer:
(a) 1000 N/C
Explanation:
Kinetic energy of electron, K = 1.6 x 10^-17 J
distance, d = 10 cm = 0.1 m
Let the potential difference is V and the electric field is E.
(a) The relation between the kinetic energy and the potential difference is
K = e V
V = K / e
Where, e be the electronic charge = 1.6 x 10^-19 C
V = 
V = 100 V
The relation between the electric field and the potential difference is given by
V = E x d
100 = E x 0.1
E = 1000 N/C
(b) The force acting on the electron, F = q E
where q be the charge on electron
So, F = -e x E
It means the direction of electric field and the force are both opposite to each other.
The direction of electric field and the force on electron is shown in the diagram.
Answer:
22m/s
Explanation:
lowest part on the graph (closest to x-axis)
Answer:
He will complete the race in total time of T = 10 s
Explanation:
Total distance moved by the sprinter in 2.14 s is given as



now the distance remaining to move

now he will move with uniform maximum speed for the remaining distance
so we will have


so the total time to complete the race is given as
