A, Lenz' Law. There need to be a difference of flux, so if you use AC you will get a current too.
Answer:
The answer is "Including all three studies of 0s to 2s, that shift in momentum is equal".
Explanation:
Its shift in momentum doesn't really depend on the magnitude of its cars since the forces or time are similar throughout all vehicles.
Let's look at the speed of the car

We use movies and find lips

The moment is defined by

The moment change

Let's replace the speeds in this equation

They see that shift is not directly proportional to the mass of cars since the force and time were the same across all cars.
<h2>
Time taken is 0.632 seconds</h2>
Explanation:
Impulse momentum theorem is change in momentum is impulse.
Change in momentum = Impulse
Final momentum - Initial momentum = Impulse
Mass x Final velocity - Mass x Initial Velocity = Force x Time
Mass x Final velocity - Mass x Initial Velocity =Mass x Acceleration x Time
Final velocity - Initial Velocity = Acceleration x Time
Final velocity = 9.9 m/s
Initial Velocity = 3.7 m/s
Acceleration = 9.81 m/s²
Substituting
9.9 - 3.7 = 9.81 x Time
Time = 0.632 seconds
Time taken is 0.632 seconds
Answer:
d = 4 d₀o
Explanation:
We can solve this exercise using the relationship between work and the variation of kinetic energy
W = ΔK
In that case as the car stops v_f = 0
the work is
W = -fr d
we substitute
- fr d₀ = 0 - ½ m v₀²
d₀ = ½ m v₀² / fr
now they indicate that the vehicle is coming at twice the speed
v = 2 v₀
using the same expressions we find
d = ½ m (2v₀)² / fr
d = 4 (½ m v₀² / fr)
d = 4 d₀o