Answer:
aaksj
Explanation:
a) the capacitance is given of a plate capacitor is given by:
C = \epsilon_0*(A/d)
Where \epsilon_0 is a constant that represents the insulator between the plates (in this case air, \epsilon_0 = 8.84*10^(-12) F/m), A is the plate's area and d is the distance between the plates. So we have:
The plates are squares so their area is given by:
A = L^2 = 0.19^2 = 0.0361 m^2
C = 8.84*10^(-12)*(0.0361/0.0077) = 8.84*10^(-12) * 4.6883 = 41.444*10^(-12) F
b) The charge on the plates is given by the product of the capacitance by the voltage applied to it:
Q = C*V = 41.444*10^(-12)*120 = 4973.361 * 10^(-12) C = 4.973 * 10^(-9) C
c) The electric field on a capacitor is given by:
E = Q/(A*\epsilon_0) = [4.973*10^(-9)]/[0.0361*8.84*10^(-12)]
E = [4.973*10^(-9)]/[0.3191*10^(-12)] = 15.58*10^(3) V/m
d) The energy stored on the capacitor is given by:
W = 0.5*(C*V^2) = 0.5*[41.444*10^(-12) * (120)^2] = 298396.8*10^(-12) = 0.298 * 10 ^6 J
Explanation:
Below is an attachment containing the solution.
Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
I pretty sure that 3 is b and 4 is A and 5 I need a full picture