The two possible angles obtained by using the qudratic equation are;
θ
= 15.10° and θ2 = 73.51°
Given, speed of water =
= 50ft/s
For the motion along x direction, time period can be calculated as follows:

35 = (50 × cosθ) t
t = 0.64 / cosθ
For the motion in y direction, an equation can be obtained as follows:


θ) 
Plugging in the values we get:

θ) 
-20 = -32tanθ - 10.304
θ
Upon solving the above quadratic equation, we get,
tanθ = 0.27 , -3.38
Therefore,
tanθ
= 0.27
θ
= 15.10°
and, tanθ
= -3.38
θ
= 73.51
Learn more about quadratic equation here:
brainly.com/question/17177510
#SPJ4
I showed my working in the images above. if you have any questions please feel free to ask
The six steps of the scientific are:
1. State the question
2. Conduct research
3. Create a hypothesis
4. Perform the experiment
5. Analyze the data
6. Conclusion
So D. would be the correct answer, even though communicating the results could possibly be a step if it's required.
Slow-twitch muscles<span> help enable long-endurance feats such as distance running, while fast-</span>twitch muscles<span> fatigue faster but are used in powerful bursts of movements like sprinting. Hope that this can help!!!</span>
The average density of the material from which the coin is made is 9.67 g/cm³.
<h3>Volume of the coin</h3>
The volume of the coin at the given diameter is calculated as follows;
V = Ah
where;
- A is area of the coin
- h is the thickness of the coin
V = πd²/4 x h
V = π(2.8)²/4 x (0.21 cm)
V = 1.293 cm³
<h3>average density of the coin</h3>
The average density of the material from which the coin is made is calculated as follows;
density = mass/volume
density = 12.5 g / (1.293 cm³)
density = 9.67 g/cm³
Thus, the average density of the material from which the coin is made is 9.67 g/cm³.
Learn more about average density here: brainly.com/question/1354972
#SPJ1