Answer:
I think they are all correct
Answer:
0.54g of Cr
Explanation:
Current (I) = 10A
Time (t) = 100s
Molecular mass of Cr = 51.996 amu
Faraday's first law of electrolysis states that
The mass of the substance (m) of a given substance deposited at an electrode is directly proportional to the quantity of electricity or charge (Q) passed
m = nQ
M = mass of the substance
n = electrochemical constant
Q = charge passed through it
Q = IT
Q = (10 * 100) = 1000C
1 moles = molarmass = Faraday's constant (96500C)
Molar mass = Faraday's constant (96500C)
51.996 g = 96500C
How many grams will be liberated with 1000C
51.996g = 96500C
Xg = 1000C
X = (1000 * 51.996) / 96500
X = 51996 / 96500
X = 0.5388g = 0.54 g of Cr will be deposited
The question is incomplete, here is the complete question:
Silicon reacts with carbon dioxide to form silicon carbide and silicon dioxide. Write the balanced chemical equation.
<u>Answer:</u> The balanced chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the reaction of silicon and carbon dioxide follows:

By Stoichiometry of the reaction:
2 moles of silicon reacts with 1 mole of carbon dioxide gas to produce 1 mole of silicon carbide and 1 mole of silicon dioxide
Hence, the balanced chemical equation is written above.