In order to properly measure the displacement, the object must be completely submerged, however in the diagram the wood is floating. So the measured displacement will only be a fraction of what it actually is.
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.
The total number of atoms in 7.10g of chlorine is 1.204 × 10²³atoms.
HOW TO CALCULATE NUMBER OF ATOMS:
- The number of atoms in a substance can be calculated by multiplying the number of moles in that substance by Avogadro's number as follows:
- no. of atoms = no. of moles × 6.02 × 10²³ mol-¹
- The number of moles in 7.10g of Cl is calculated as follows:
no. of moles = mass ÷ molar mass
no. of moles = 7.10g ÷ 35.5g/mol
no. of moles = 0.2mol
no of atoms = 0.2mol × 6.02 × 10²³
no. of atoms = 1.204 × 10²³atoms.
- Therefore, the total number of atoms in 7.10g of chlorine is 1.204 × 10²³atoms.
Learn more: brainly.com/question/15488332?referrer=searchResults
As the earth is in the form of a sphere, the angle of incidence of the sun's rays at the earth's surface increases from the equator towards the poles and therefore the amount of heat received on a GIVEN AREA diminishes in the same direction. Temperature is therefore normally hottest near the equator and coolest near the poles.