Answer:
The concentration of the most dilute solution is 0.016M.
Explanation:
First, a solution is prepared and then it undergoes two subsequent dilutions. Let us calculate initial concentration:
![[Na_{2}SO_{4}]=\frac{moles(Na_{2}SO_{4})}{liters(solution)} =\frac{mass((Na_{2}SO_{4}))}{molarmass(moles(Na_{2}SO_{4}) \times 0.100L)} =\frac{2.5316g}{142g/mol\times 0.100L } =0.178M](https://tex.z-dn.net/?f=%5BNa_%7B2%7DSO_%7B4%7D%5D%3D%5Cfrac%7Bmoles%28Na_%7B2%7DSO_%7B4%7D%29%7D%7Bliters%28solution%29%7D%20%3D%5Cfrac%7Bmass%28%28Na_%7B2%7DSO_%7B4%7D%29%29%7D%7Bmolarmass%28moles%28Na_%7B2%7DSO_%7B4%7D%29%20%5Ctimes%200.100L%29%7D%20%3D%5Cfrac%7B2.5316g%7D%7B142g%2Fmol%5Ctimes%200.100L%20%7D%20%3D0.178M)
<u>First dilution</u>
We can use the dilution rule:
C₁ x V₁ = C₂ x V₂
where
Ci are the concentrations
Vi are the volumes
1 and 2 refer to initial and final state, respectively.
In the first dilution,
C₁ = 0.178 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

<u>Second dilution</u>
C₁ = 0.053 M
V₁ = 15 mL
C₂ = unknown
V₂ = 50 mL
Then,

Electromagnetic waves can be transferred through empty space
In nitrogen-14, there are 7 protons, 7 neutrons, and 7 electrons. The protons and neutrons are in the nucleus, and the electrons are in the electron shells. The atomic number is the number of protons, the mass number is the number of protons AND neutrons, and the atomic mass is the average of the masses of all isotopes.
134 pm
Got this off of quizlet I’m not 100% an expert but I tried to help
Answer:
a. Boron trifluoride
b. Propane
c. Dinitrogen pentoxide
d. Carbon Dioxide
e. Silicon Octafluroride?