Answer:
b. it has the same centripetal acceleration as car A.
Explanation:
According to the question, the data provided is as follows
Constant speed of car A = 20 m/s
Constant tangential acceleration until its speed is 40 m/s
Based on the above information, the true statement is the same centripetal acceleration as car A because
As we know that
Centripetal acceleration is

where,
= velocity
r = radius of the path
Now if both car A and car B moving in the same or identical circular path having the same velocity so in this case there is the same centripetal acceleration for that particular time
hence, the second option is correct
Answer:
mass*velocity=1.5*10^4 * 15
= 22.5*10^4
Answer:
68.8 N 13.8°N of W
Explanation:
F₁ is 50 N 30°N of W. The terminal angle is 150°.
F₂ is 25 N 20°S of W. The terminal angle is -160°.
Graphically, you can add the vectors using head-to-tail method. Move F₂ so that the tail of the vector is at the head of F₁. The resultant vector will be from the tail of F₁ to the head of F₂.
Algebraically, find the x and y components of each vector.
F₁ₓ = 50 N cos(150°) = -43.3 N
F₁ᵧ = 50 N sin(150°) = 25 N
F₂ₓ = 25 N cos(-160°) = -23.5 N
F₂ᵧ = 25 N sin(-160°) = -8.6 N
The x and y components of the resultant vector are the sums:
Fₓ = -43.3 N + -23.5 N = -66.8 N
Fᵧ = 25 N + -8.6 N = 16.4 N
The magnitude of the resultant force is:
F = √(Fₓ² + Fᵧ²)
F = √((-66.8 N)² + (16.4 N)²)
F = 68.8 N
The direction of the resultant force is:
θ = tan⁻¹(Fᵧ / Fₓ)
θ = tan⁻¹(16.4 N / -66.8 N)
θ = 166.2°
θ = 13.8°N of W
Answer:
Explanation:
Given
ambient Pressure =98.10 kPa
(a)gauge pressure 152 kPa
we know
Absolute pressure=gauge pressure+Vacuum Pressure
=152+98.10=250.1 kPa or 36.27 psi
(b)
=67.5 Torr or 8.99 kpa
as 1 Torr is 0.133 kPa
=8.99+98.10=107.09 kPa or 15.53 psi
(c)
=0.1 bar or 10 kPa
Thus absolute pressure=98.10-10=88.10 kPa or 12.77 psi
as 1 kPa is equal to 0.145 psi
(d)
=0.84 atm or 85.113 kPa
as 1 atm is equal to 101.325 kPa
=98.10-85.11=12.99 kPa or 1.88 psi
For the answer to the question above asking <span>Which is NOT part of the equation for angular momentum? The answer is the last one among the given choices above which is D. Force
I hope my answer helped you. Have a nice day!</span>