Answer:
v=32.49 m/s
Explanation:
Given that
Distance ,d= 66 m
Initial speed of the car ,u = 0 m/s
Coefficient of friction ,μ = 0.8
Lets take the total mass of the car = m
The acceleration of the car is given as
a = μ g ( g= 10 m/s² )
Now by putting the values in the above equation we get
a= 0.8 x 10 m/s²
a= 8 m/s²
We know that ,final speed is given as
v²= u ²+ 2 a d
Now putting the value
v²=0² + 2 x 8 x 66
v²= 1056
v=32.49 m/s
Dependent variable is your answer.
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
Answer:
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise
Explanation:
Given data
initial circumference = 165 cm
rate = 12.0 cm/s
magnitude = 0.500 T
tome = 9 sec
to find out
emf induced and direction
solution
we know emf in loop is - d∅/dt ........1
here ∅ = ( BAcosθ)
so we say angle is zero degree and magnetic filed is uniform here so that
emf = - d ( BAcos0) /dt
emf = - B dA /dt ..............2
so area will be
dA/dt = d(πr²) / dt
dA/dt = 2πr dr/dt
we know 2πr = c,
r = c/2π = 165 / 2π
r = 26.27 cm
c is circumference so from equation 2
emf = - B 2πr dr/dt ................3
and
here we find rate of change of radius that is
dr/dt = 12/2π = 1.91
cm/s
so when 9.0s have passed that radius of coil = 26.27 - 191 (9)
radius = 9.08
cm
so now from equation 3 we find emf
emf = - (0.500 ) 2π(9.08
) 1.91 
emf = - 0.005445
and magnitude of emf = 0.005445 V
so
emf induced is 0.005445 V and direction is clockwise because we can see area is decrease and so that flux also decrease so using right hand rule direction of current here clockwise