Answer:
2.9 M
Explanation:
The concentration-time equation for a second order reaction is:
1/[A] = kt + 1/[A°]
Where,
A = concentration remaining at time, t
A° = initial concentration
k = rate constant
1/[A] = (1.80 x 10^-3) * (45.6) + 1/3.81
1/[A] = 0.345
= 1/0.345
= 2.9 M.
Sedimentary rocks are formed when sediment is deposited out of air, ice, wind, gravity, or water flows carrying the particles in suspension. This sediment is often formed when weathering and erosion break down a rock into loose material in a source area.
Answer:
v = 21.03 m/s
Explanation:
given,
mass of skier = 45 kg
the slope of the snow = 10.0◦
coefficient of friction = 0.114
distance traveled = 300 m
speed = ?
Acceleration = g sin θ - µ g Cos θ
= 9.8 × Sin (10°) - 0.10 × 9.8 × Cos(10°)
= 0.737 m/s²
using equation of motion
v² = u² + 2 a s
v² = 0 + 2 × 0.737 × 300
v = 21.03 m/s
Speed of skier's after travelling 300 m speed is equal to 21.03 m/s
Answer:
the pendulum loses momentum and stops because of gravity and wind resistance. it does not violate the law of conservation of energy because it is not gaining any more momentum than what it had started with
Explanation:
When light moves from a medium with higher refractive index to a medium with lower refractive index, the critical angle is the angle above which there is no refracted light, and all the light is reflected. The value of this angle is given by
where n2 and n1 are the refractive indices of the second and first medium, respectively.
In the first part of the problem, light moves from glass to air (
) and the critical angle is
. This means that we can find the refractive index of glass by re-arranging the previous formula:
Now the glass is put into water, whose refractive index is
. If light moves from glass to water, the new critical angle will be