Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
Answer:
Power = 0.33 Watts
Explanation:
Given the following data;
Distance = 1m
Force = 20N
First of all, we would solve for the work done by the boy.
Workdone = force * distance
Substituting into the equation, we have;
Workdone = 20*1 = 20J
Now to find power;
Power = workdone/time
Power = 20/60
Power = 0.33 Watts.
The change in the internal energy of the system is 110 kJ.
<h3>What is internal energy?</h3>
Internal energy is defined as the energy associated with the random, disorder motions of molecules.
calculate the change in internal energy, we apply the formula below.
Formula:
- ΔU = Q-W.................... Equation 1
Where:
- ΔU = Change in internal energy
- Q = Heat absorbed from the surroundings
- W = work done by the system
From the question,
Given:
Substitute these values into equation 1
Hence, The change in the internal energy of the system is 110 kJ.
Learn more about change in internal energy here: brainly.com/question/4654659
Answer:
F= 600 N
Explanation:
Given that
Initial velocity ,u= 0 m/s
Final velocity ,v= 30 m/s
mass ,m = 0.5 kg
time ,t= 0.025 s
The change in the linear momentum is given as
ΔP= m (v - u)
ΔP= 0.5 ( 30 - 0 ) kg.m/s
ΔP= 15 kg.m/s
We know that from second law of Newtons


Now by putting the values

F= 600 N
Answer:
The mass of object is calculated as 5.36 kg
Explanation:
The known terms to find the mass are:
acceleration of object (a) = 22.35 
Force exerted (F) = 120N
mass of an object (m) = ?
From Newton's second law of motion;
F = ma
or, 120 = m × 22.35
or, m=
kg
∴ m = 5.36 kg