Answer:
26.82m/s
Explanation:
Given
Mass = m= 0.4kg
Initial Velocity = u = 0
Charge = 4.0E-5C
Distance= d = 0.5m
Object Charge = 2E-4C
First, we'll calculate the initial energy (E)
E = Potential Energy
PE = kQq / d
Where k = coulomb constant = 8.99E9Nm²/C²
Energy is then calculated by;
PE = 8.99E9 * 4E-5 * 2E-4 / 0.5
PE = 143.84J
Energy = Potential Energy = Kinetic Energy
K.E = ½mv² = 143.84J
½mv² = ½ * 0.40 * v² = 143.85
0.2v² = 143.85
v² = 143.85/0.2
v² = 719.25
v = √719.25
v = 26.81883666380777
v = 26.82m/s
Hence, the object is 26.82m/s fast when the cart moving is very far (infinity) from the fixed charge
Answer:
1. Can change the state of an object(rest to motion/ motion to rest)
2. May change the speed of an object if it is already moving.
3. May change the direction of motion of an object.
Explanation: A force acting on an object causes the object to change its shape or size, to start moving, to stop moving, to accelerate or decelerate.
Answer:
atoms cannot go bad
Explanation:
Because they stay alive and get good nutriants
Answer:
change the
Explanation:
P = W/time
W = F*d
You have control over how fast you go up the stairs.
You also have control over how far up the stairs you go.
Therefore the answer is
If you don't like distance as an answer, you can carry something up the stairs -- anything that increases F will do.
Answer:
A) x4
Explanation:
Magnification is equal to image size divided by the actual size, or M = I/A.
The image size is the student's drawing, which is 28.8 cm, and the actual size is 7.2 cm. Divide them, and cancel out the units, and you should get:
28.8 cm/7.2 cm = 4