The question is incomplete! The complete question along with answer and explanation is provided below.
Question:
A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.
What is the change in the potential energy (in Joules) of the mass as it goes up the incline?
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?
Given Information:
Mass = m = 0.5 kg
Horizontal distance = d = 40 cm = 0.4 m
Vertical distance = h = 7 cm = 0.07 m
Normal force = Fn = 1 N
Required Information:
Potential energy = PE = ?
Work done = W = ?
Answer:
Potential energy = 0.343 Joules
Work done = 0.39 N.m
Explanation:
The potential energy is given by
PE = mgh
where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.
PE = 0.5*9.8*0.07
PE = 0.343 Joules
As you can see in the attached image
sinθ = opposite/hypotenuse
sinθ = 0.07/0.4
θ = sin⁻¹(0.07/0.4)
θ = 10.078°
The horizontal component of the normal force is given by
Fx = Fncos(θ)
Fx = 1*cos(10.078)
Fx = 0.984 N
Work done is given by
W = Fxd
where d is the horizontal distance
W = 0.984*0.4
W = 0.39 N.m
It’s biotic because it’s a living thing
Abiotic would be like a rock non living things
Answer:Biotic
Answer:
2,800 n
Explanation:
hope this helps, have a nice day/night! :D
Answer:
v₂ = 70 m / s
Explanation:
For this exercise let's use Bernoulli's equation
where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂
indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute
ρ g y₁ = ½ ρ v₂²
v₂ =
let's calculate
v₂ = √( 2 9.8 250)
v₂ = 70 m / s
Answer:
Peer Review
Explanation:
When scientist check other scientists the process is dubbed "peer review".