What happens to has when it cools is ...
Step 1) They will start to form liquids, like condensation.
Step 2) As liquids cool, they will turn into solids.
Step 3) As solids cool, they become more stable and solid.
Answer:
The kinetic energy of the particle as it moves through point B is 7.9 J.
Explanation:
The kinetic energy of the particle is:
<u>Where</u>:
K: is the kinetic energy
: is the potential energy
q: is the particle's charge = 0.8 mC
ΔV: is the electric potential = 1.5 kV
Now, the kinetic energy of the particle as it moves through point B is:


Therefore, the kinetic energy of the particle as it moves through point B is 7.9 J.
I hope it helps you!
Answer:
1/8 = (1/2)^3
This implies the sample has decayed for 3 half lives
3 * 5730 yrs = 17,200 years
Answer:
40 N/m
Explanation:
The diagram attached is used to answer the question
We know from Hooke's law that extension is directly proportional to the applied force hence
F=kx where x is extension, F is applied force and k is the spring constant. Making k the subject of the formula then

From the attached diagram extension is given by subtracting unstretched spring from stretched spring hence extension, x=1-0.5=0.5m
Substituting 20 N for F and 0.5 m for x then

Our atmosphere would be quickly stripped away, much like what apparently happened on Mars after its molten core cooled and solidified. The spinning Earth core is what helps create our magnetic field, without which means no Van Allen Belts, which mean solar radiation becomes more lethal than just sun burn