Answer: 197
Explanation:
Because mechanical energy and mass it speeds up
In order to solve the problem, it is necessary to apply the concepts related to the conservation of momentum, especially when there is an impact or the throwing of an object.
The equation that defines the linear moment is given by

where,
m=Total mass
Mass of Object
Velocity before throwing
Final Velocity
Velocity of Object
Our values are:

Solving to find the final speed, after throwing the object we have

We have three objects. For each object a launch is made so the final mass (denominator) will begin to be subtracted successively. In addition, during each new launch the initial speed will be given for each object thrown again.
That way during each section the equations should be modified depending on the previous one, let's start:
A) 



B) 



C) 



Therefore the final velocity of astronaut is 3.63m/s
Answer:
.
Explanation:
By Newton's Second Law, the acceleration
of an object is proportional to the net force
on it. In particular, if the mass of the object is
, then
.
Rewrite this equation to obtain:
.
In this case, the assumption is that the
force is the only force that is acting on the object. Hence, the net force
on the object would also be
Make sure that all values are in their standard units. Forces should be in Newtons (same as
, and the acceleration of the object should be in meters-per-second-squared (
). Apply the equation
to find the mass of the object.
.
Decibel - the decibel is a relative unit of measurement equal to one 10th of a bel
Answer:
(d) A strong electron-phonon interaction
Explanation:
Superconductivity -
The phenomenon of superconductivity is due to the attractive force between electrons from the exchange of the phonons that cause the bound pair of electrons known as cooper pairs .
A strong electron -phonon intercation is suitable condition for superconductivity and high resistance .