Answer:
The correct answer is: 1.035 x 10⁻³ M
Explanation:
The dissociation equilibrium for acetic acid (CH₃COOH) is the following:
CH₃COOH(aq) ↔ CH₃COO⁻(aq) + H⁺(aq) Kc = 1.8 x 10⁻⁵
The expression for the equilibrium constant (Kc) is the ratio of concentrations of products over reactants. The products are acetate ion (CH₃COO⁻) and hydrogen ion (H⁺) while the reactant is acetic acid (CH₃COOH):
![Kc=\frac{[CH_{3} COO^{-} ][H^{+} ]}{[CH_{3} COOH]}= 1.8 x 10^{-5}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7D%20COO%5E%7B-%7D%20%5D%5BH%5E%7B%2B%7D%20%5D%7D%7B%5BCH_%7B3%7D%20COOH%5D%7D%3D%201.8%20x%2010%5E%7B-5%7D)
Given: [CH₃COOH]= 0.016 M and [CH₃COO⁻]= 0.92 M, we replace the concentrations in the equilibrium expression and we calculate [H⁺]:
![\frac{(0.016 M)[H^{+} ]}{(0.92M)}= 1.8 x 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%280.016%20M%29%5BH%5E%7B%2B%7D%20%5D%7D%7B%280.92M%29%7D%3D%201.8%20x%2010%5E%7B-5%7D)
⇒[H⁺]= (1.8 x 10⁻⁵)(0.92 M)/(0.016 M)= 1.035 x 10⁻³ M
Answer: The pressure in the can is 4.0 atm
Explanation:
According to ideal gas equation:
P = pressure of gas = ?
V = Volume of gas = 0.410 L
n = number of moles =
R = gas constant =
T =temperature =
Thus the pressure in the can is 4.0 atm
The experiment involving the determination of the number of ice cubes required to keep the temperature of the glass under 15 degrees Celcius, the following things have to be kept in mid:
- The<u> temperature</u> of the surroundings
- The initial temperature of the <u>glass</u>
- The <u>number of ice cubes </u>added to the water in the glass
In order to keep into consideration the changing environmental temperatures (which is a variable in the experiment), the experiment had to be conducted daily to get <u><em>accurate results </em></u>keeping into consideration all the factors.
brainly.com/question/11256472
Qwesdfgudfdfdess de afefdfsfwrqdetgr
Answer:
<h2>The sequence is; b, e, a, d, c
</h2>
Explanation:
1. In a decomposition reaction; One reactant is broken down into two or more than two products is called decomposition.
2. A combustion reaction; A fuel is combined with oxygen to produce carbon dioxide and water, this reaction is called combustion reaction.
3. A synthesis reaction; it occurs when two or more reactants combine to form one product is known as synthesis reaction.
4. Double Replacement Reaction; Two compounds react to form two different compounds is known as double Replacement Reaction.
5. A single replacement reaction; occurs when a compound reacts with an element to form a new compound , this reaction is called as single replacement reaction.