<em>Answer,</em>
<em><u>S = -16</u></em>
<em>Explanation,</em>
<em><u>Step 1: Simplify both sides of the equation.</u></em>
<em>13 + 11s = − 15 + 8s − 20</em>
<em>13 + 11s = − 15 + 8s + − 20</em>
<em>11s + 13 = (8s) + (</em><em><u>− 15</u></em><em> + </em><em><u>− 20</u></em><em>) </em><em>(Combine Like Terms)</em>
<em>11s + 13 = 8s + − 35</em>
<em>11s + 13 = 8s − 35</em>
<em><u>Step 2: Subtract 8s from both sides.</u></em>
<em>11s + 13 − 8s = 8s − 35 − 8s</em>
<em>3s + 13 = − 35</em>
<em>Step 3: Subtract 13 from both sides.</em>
<em>3s + 13 − 13 = − 35 − 13</em>
<em>3s = − 48</em>
<em><u>Step 4: Divide both sides by 3.</u></em>
<em>3s/3 = −48/3</em>
<em>s = -16</em>
<u><em>Hope this helps :-)</em></u>
Answer:
a₄=8n+1= -39.
Step-by-step explanation:
1) if a₁=3n; a₃=5n-6 and a₅=11n+8, then it is possible to calculate the difference according to 0.5(a₅-a₃)=0.5(a₃-a₁). Then
2) 0.5(11n+8-5n+6)=0.5(5n-6-3n); ⇔ 6n+14=2n-6; ⇔ n= -5.
3) if n=-5, then the 4th term is:

or a₄=-39.
Answer:
a
Step-by-step explanation:
the solution to the system is at the point of intersection of the linear equations.
the lines intersect at (- 4, 3 )
then solution is (- 4, 3 )