Because the silt (dirt particles) in muddy water eventually settles out, the muddy water is a __suspension__ .
∆g for these initial partial pressures is 10,403.31 KJ.
ΔG gets increasingly positive as a product gas's partial pressure is raised. ΔG becomes more negative as the partial pressure of a reactant gas increases.
∆g = RT ln (q/k)
In this equation: R = 8.314 J mol⁻¹ K⁻¹ or 0.008314 kJ mol⁻¹ K⁻¹
K = 325
If ΔG < 0, then K > Q, and the reaction must proceed to the right to reach equilibrium.
∴∆g = RT ln (q/k)
= 8.314 × 298 ln ( 5 / 325)
= 2477.57 ln 0.015
= 2477.57 × (-4.199)
= 10,403.31 KJ
Products are preferred over reactants at equilibrium if G° 0 and both the products and reactants are in their standard states. When reactants are preferred above products in equilibrium, however, if G° > 0, K 1. At equilibrium, neither reactants nor products are preferred if G° = 0, hence K = 1.
Therefore, ∆g for these initial partial pressures is 10,403.31 KJ.
Learn more about equilibrium here:
brainly.com/question/13414142
#SPJ4
Answer:
A. from a low-temperature areas to high-temperature areas
Explanation:
it goes from low-temperature to high-temperature because it's reacting
Answer:
79.2 m/s
Explanation:
θ = angle at which projectile is launched = 29.7 deg
a = initial speed of launch = 130 m/s
Consider the motion along the vertical direction
v₀ = initial velocity along the vertical direction = a Sinθ = 130 Sin29.7 = 64.4 m/s
y = vertical displacement = - 108 m
a = acceleration = - 9.8 m/s²
v = final speed as it strikes the ground
Using the kinematics equation
v² = v₀² + 2 a y
v² = 64.4² + 2 (-9.8) (-108)
v = 79.2 m/s
Glaciers, weather, and water shape Earth by (B.) the erosion.
Hope it helped you!
Have a great day!
-Charlie