Answer:
A current can be induced in a conducting loop if it is exposed to a changing magnetic field. ... In other words, if the applied magnetic field is increasing, the current in the wire will flow in such a way that the magnetic field that it generates around the wire will decrease the applied magnetic field.
Explanation:
Ilana is togladly hospitalized for the loss and the loss and her family of the dead were in a coma and she had to go on the plane and then to go to a hotel and to see if the girl had a child and a woman was in a car crash or something like it could have caused a lot to happen with her body that could help him get out the next morning after a long day of work and a woman was in a condition of a new yo girl in her apartment and was taken into a car in a coma at a
Answer:
(a): emf =
(b): Amplitude of alternating voltage = 20.942 Volts.
Explanation:
<u>Given:</u>
- Area of the coil = A.
- Number of turns of coil = N.
- Magnetic field = B
- Rotation frequency = f.
(a):
The magnetic flux through the coil is given by

where,
= area vector of the coil directed along the normal to the plane of the coil.
= angle between
and
.
Assuming, the direction of magnetic field is along the normal to the plane of the coil initially.
At any time t, the angle which magnetic field makes with the normal to the plane of the coil is 
Therefore, the magnetic flux linked with the coil at any time t is given by

According to Faraday's law of electromagnetic induction, the emf induced in the coil is given by

(b):
The amplitude of the alternating voltage is the maximum value of the emf and emf is maximum when 
Therefore, the amplitude of the alternating voltage is given by

We have,

Putting all these values,

Answer:
B
Explanation:
Two atoms which are isotopes of one another must have a different number of neutrons.
Isotopes are defined as atoms of the same element which have the same numbers of protons i.e. atomic number remains the same, but has different numbers of neutrons. It is observed that they have same chemical properties due to the same electronic configuration but physical properties differs.
'Displacement' is the distance and direction between the starting point and
ending point, regardless of the path followed to get there.
A particle that's executing simple harmonic motion is always in the same place
where it was one time period ago, and where it will be later after another time
period has passed.
So its displacement during exactly one time period is exactly zero.