Answer:- 14.0 moles of hydrogen present in 2.00 moles of
.
Solution:- We have been given with 2.00 moles of
and asked to calculate the grams of hydrogen present in it. It's a two step conversion problem. In first step we convert the moles of the compound to moles of hydrogen as one mol of the compound contains 7 moles of hydrogen. In next step the moles are converted to grams on multiplying the moles by atomic mass of H. The calculations are shown as:

= 14.0 g H
So, there are 14.0 g of hydrogen in 2.00 moles of
.
Answer:The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum. A compound, C5H10O2, exhibits strong, broad absorption across the 2500-3200 cm^1 region and an intense absorption at 1715 cm'^-1. Relative absorption intensity: (s)=strong, (m)-medium, (w) weak. What functional class(cs) docs the compound belong to List only classes for which evidence is given here. Attach no significance to evidence not cited explicitly. Do not over-interpret exact absorption band positions. None of your inferences should depend on small differences like 10 to 20 cm^1. The functional class(es) of thla compound is(are) alkane (List only if no other functional class applies.) alkene terminal alkyne internal alkyne arene alcohol ether amine aldehyde or ketone carboxylic acid ester nitr
Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
The correct option is C.
The pitch of a string refers to the quality of sound that is produced by the string when it vibrates. There are three basic factors that affect the quality of pitch of a string, these are: the tension, the thickness of the string and the length of the string. The higher the thickness of the string, the lower the pitch of the string, thus, increasing the thickness of the string will lower the pitch.