Gravity is the attraction of every body to every other body due to the masses of each body. The larger the mass, the greater the force. It also depends on the distances: the closer the bodies, the greater the force. Gravity is directed toward the center of a body, and the distance is measured from the center.
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls.
Answer:
10 :)
You have to divide the difference of speed and divide it by the time. So 100-20 would be 80, and if you divide that by 8 it would be 10.
Hope this helps.
It does not violate the law of conservation of energy. The oscillation stops when the energy is lost and the energy is lost because it becomes heat that is created by the air resistance and many other forces found in the surrounding of the oscillating spring.
Answer:
W = 55.12 J
Explanation:
Given,
Natural length = 6 in
Force = 4 lb, stretched length = 8.4 in
We know,
F = k x
k is spring constant
4 = k (8.4-6)
k = 1.67 lb/in
Work done to stretch the spring to 10.1 in.

![W = \dfrac{k}{2}[x^2]_6^{10.1}](https://tex.z-dn.net/?f=W%20%3D%20%5Cdfrac%7Bk%7D%7B2%7D%5Bx%5E2%5D_6%5E%7B10.1%7D)

W = 55.12 J
Work done in stretching spring from 6 in to 10.1 in is equal to 55.12 J.
Answer:
to a warm front. Remember to include all data collected on warm fron … ... Remember to include all data collected on warm fronts in this activity to support your answer (examples: interaction of air masses, air pressure, cloud cover, temperature behind/ahead of front, wind direction, precipitation, etc. 1
Explanation: