Explanation:
The reading on the scale is
W = m(g + a)
= (77 kg)(9.8 m/s^2 + 2 m/s^2)
= 908.6 N
Explanation:
The moment of inertia of each disk is:
Idisk = 1/2 MR²
Using parallel axis theorem, the moment of inertia of each rod is:
Irod = 1/2 mr² + m (R − r)²
The total moment of inertia is:
I = 2Idisk + 5Irod
I = 2 (1/2 MR²) + 5 [1/2 mr² + m (R − r)²]
I = MR² + 5/2 mr² + 5m (R − r)²
Plugging in values:
I = (125 g) (5 cm)² + 5/2 (250 g) (1 cm)² + 5 (250 g) (5 cm − 1 cm)²
I = 23,750 g cm²
Answer:
the magnitude of acceleration will be 1.50m/s^2
Explanation:
To calculate your acceleration, you can use your formula that states that the net force on an object is equal to the mass of the object multiplied by the acceleration of the object. Fnet=ma
if you draw out this situation and label the forces you will have your vector towards the right with a magnitude of 20.0N and then your friction vector will be pointing to the left (in other words, in the negative direction) (opposing the direction of movement) with a magnitude of 5.00N, with the 10.0 kg box in the middle.
The net force will be calculated using F1+F2=Fnet where your F1=20.0N and F2= -5.00N (since it is towards the negative direction).
you will find that Fnet=15.0N
With that, plug in the values you know to calculate the acceleration of the block:
Fnet=ma
(15.0N)=(10.0kg)a from her you can divide both sides by 10 to isolate a:
1.50=a (and now make sure to label the units of your answer)
a=1.50m/s^2 (which is the typical unit for acceleration)
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>