Although the process varies slightly from one material to another, the general process is as follows:
1) Choose an appropriate container for the solid. This may be a petri dish or a beaker in which you want to prepare the solution of the solid or any other lab equipment.
2) Place the container on a mass balance, then turn the balance on. The mass balance will automatically zero-out the mass of the container, so that any mass that you add on the container will be the mass of the solid. Alternatively, you may first measure the mass of the empty container alone.
3) Add the solid using a lab spatula. The solid should be added more slowly when the reading on the scale comes close to the desired value.
4) Remove the container from the mass balance after the desired amount of solid has been added.
Answer:
Preparation and Standardization of 0.1 M Ferrous Ammonium...
Dissolve 40 g of ferrous ammonium sulfate in a previously cooled mixture of 40 ml of sulphuric acid and 200 ml of water.
Dilute with sufficient freshly boiled and cooled water to produce 1000 ml.
Standardize the solution in the following manner.
Explanation:
Answer:
0.0693M Fe
Explanation:
It is possible to quantify Fe in a sample using Mn as internal standard using response factor formula:
F = A(analyte)×C(std) / A(std)×C(analyte) <em>(1)</em>
Where A is area of analyte and std, and C is concentration.
Replacing with first values:
F = 1.05×2.00mg/mL / 1.00×2.50mg/mL
<em>F = 0.84</em>
In the unknown solution, concentration of Mn is:
13.5mg/mL × (1.00mL/6.00mL) = <em>2.25 mg Mn/mL</em>
Replacing in (1) with absorbances values and F value:
0.84 = 0.185×2.25mg/mL / 0.128×C(analyte)
C(analyte) = <em>3.87 mg Fe / mL</em>
As molarity is moles of solute (Fe) per liter of solution:
= <em>0.0693M Fe</em>
The moles of fluorine present are 71/19 = 3.74
Now, we know that one mole of gas at 273 K and 101.3 kPa (S.T.P.) occupies 22.4 liters
Volume of 3.74 moles at S.T.P = 3.74 x 22.4
Volume = 83.776 L = 83,776 mL
Now, we use Boyle's law, that for a given amount of gas,
PV = constant
P x 6843 = 101.3 x 83776
P = 1,240 kPa
Answer:
my define it will be turst me is c