The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
Answer: Potassium Chloride
Explanation:
<span>Fe(NO3)2
The NO3 part is a poly-atomic ion with total charge -1.
This is because Fe has a +2 charge and two NO3's with a -1 charge will balance out to 0.
Most often we just make the assumption that Oxygen has a -2 oxidation number because it is very electro-negative.
So to find N, we just need an oxidation number that balances out with 3(-2) to get -1 (the total charge of the ion)</span>
Atomic mass Hg = 200.59 u.m.a
200.59 g --------------- 6.02x10²³ atoms
( mass Hg ) ----------- 1.20 x10²² atoms
mass Hg = ( 1.20x10²² ) x 200.59 / 6.02x10²³
mass Hg = 2.407x10²⁴ / 6.02x10²³
= 3.998 g of Hg
hope this helps!
The principal thing that one can read from a periodic table is the atomic number which is the number in the box that the element symbol appears and it means the number of protons in the nucleus of its atom and this number determines its chemical properties and is unique for each chemical element. The table is color coded to show the different types of elements ie "transition metals, alkali metals, noble gases" etc. and these different types are grouped together.