Answer:
24.71cm
Explanation:
We approach this problem base don Hooke's law which states the elongation produced in an elastic material is proportional to the applied load or force provided that its elastic limit is not exceeded. This is expressed mathematically as follows;

where F is the applied force, k is the force constant and e is the elongation or extension of the material.
In this problem, the applied force F is the weight of the wood which is calculated as follows,

m = 4.11kg

Hence,

Given that k = 163N/m, we make appropriate substitutions into equation (1) to obtain the following;

Since it is required in cm, we perform the conversion as follows, knowing that 100cm = 1m

NB: We do not necessarily need the the density of the wood to perform our calculations since other parameters were given from which we were able to obtain its weight.
C that is the condensation point
If the light is traveling straight up, then it hits the interface (surface
or boundary) between water and air perpendicularly (90° to the surface).
This direction is the direction of the 'normal' to the surface. So the
angle of incidence is zero, and that means the angle of refraction is
also zero. The light just keeps going in the same direction when it
emerges into the air, and is not bent.
However, its speed increases in air, and that means its wavelength
also becomes longer than it was in the water.
Answer:
true
Explanation:
The law of conservation of charge states that whenever electrons are transferred between objects, the total charge remains the same.