Answer:
182.9 Volts
Explanation:
R = resistance of the resistor = 50 Ω
C = capacitance of the capacitor = 200 μF = 200 x 10⁻⁶ F
L = Inductance of the inductor = 120 mH = 0.12 H
f = frequency = 60 Hz
Capacitive reactance is given as
X = (2πfC)⁻¹
X = (2(3.14) (60) (200 x 10⁻⁶))⁻¹
X = 13.3 Ω
Inductive reactance is given as
X' = 2πfL
X' = 2(3.14) (60) (0.12)
X' = 45.2 Ω
Impedance of the circuit is given as
z = √(R² + (X' - X)²)
z = √(50² + (45.2 - 13.3)²)
z = 59.31 Ω
V = rms emf of the source = 240 Volts
rms voltage across the inductor is given as
V' = V z⁻¹ X'
V' = (240) (59.31)⁻¹ (45.2)
V' = 182.9 Volts
Answer:
30 N
Explanation:
there are two forces act on the bar:
- weight of 1.5 kg mass, w = mg = 15 N
- weight of the bar, wb
for balance,
w * Lw = wb * Lwb
Lw = length of bar from the mass to the pivot
Lwb = lenght of bar from the center of the bar to the pivot
15 * 20 = wb * (50-20)
300 = wb * 30
wb = 300/30 = 30 N
Answer:
a = -36.8 m/s/s
Explanation:
Initial speed of the car

finally car will stop after it cover the distance

so we have

here we have


