Answer:
5
Explanation:
you need your u a good shsuaua8aia
From each drop-down menu, a solid has (a definite volume and a definite shape), a Liquid has (a definite volume) and gas has ( non of the above)
<h3>The features of different states of Matter:</h3>
Matter is defined as anything that has weight and occupies space.
There are three states of matter that is in existence which include:
- Solid: The particles of solid are closely packed together and vibrate around fixed axes. That is why they have a definite shape and volume.
- Liquid: The particles of liquid, though attracted to each other,move freely over each other. That is why they have definite volume but not a definite shape.
Therefore, a liquid occupies the shape of its container.
- Gas: The particles of gas contain scattered molecules that are dispersed across a given volume.
Therefore, a gas neither has a definite shape nor volume.
Learn more about matter here:
brainly.com/question/3998772
It’s the third one because Cl has 17 protons bc of the numeric number and 18 electrons bc it’s always the opposite and 18 neutrons because you subtract 35-17=18
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
<h3>What is the boiling-point elevation?</h3>
Boiling-point elevation describes the phenomenon that the boiling point of a liquid will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent.
- Step 1: Calculate the molality of the solution.
We will use the definition of molality.
b = mass solute / molar mass solute × kg solvent
b = 30.0 g / (58.44 g/mol) × 3.75 kg = 0.137 m
- Step 2: Calculate the boiling-point elevation.
We will use the following expression.
ΔT = Kb × m × i
ΔT = 0.512 °C/m × 0.137 m × 2 = 0.140 °C
where
- ΔT is the boiling-point elevation
- Kb is the ebullioscopic constant.
- b is the molality.
- i is the Van't Hoff factor (i = 2 for NaCl).
The normal boiling-point for water is 100 °C. The boiling-point of the solution will be:
100 °C + 0.140 °C = 100.14 °C
Assuming an ebullioscopic constant of 0.512 °C/m for the water, If you add 30.0g of salt to 3.75kg of water, the boiling-point elevation will be 0.140 °C and the boiling-point of the solution will be 100.14 °C.
Learn more about boiling-point elevation here: brainly.com/question/4206205
Answer:
neon gas
Explanation:
neon is a noble gas, meaning it has a full outer shell of elections. this means it is stable and is very unlikely to have a reaction with another substance.