Answer: it holds two atoms together in a molecule. During a chemi- cal reaction, some of the bonds in the original molecule break. New bonds form to produce a new substance.
Explanation:
J.j. Thomson discovered them
Answer:
0.7246 M
Explanation:
Considering:
Or,
Given :
For
:
Molarity = 2.086 M
Volume = 188.9 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 188.9×10⁻³ L
Thus, moles of
:
Moles of
= 0.39405 moles
For NaOH :
Molarity = 0.4607 M
Volume = 269.3 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 269.3×10⁻³ L
Thus, moles of NaOH :
Moles of NaOH = 0.1241 moles
According to the given reaction:
1 moles of
react with 2 moles of NaOH to form 1 mole of sodium sulfate.
Thus,
2 moles of NaOH react with 1 mole of 
1 mole of NaOH react with 1/2 mole of 
0.1241 moles of NaOH react with (1/2)×0.1241 mole of 
Moles of
that got reacted = 0.06205 moles
Unreacted moles = Total moles - Moles that got reacted = 0.39405 - 0.06205 moles = 0.332 moles
Total volume = 188.9×10⁻³ L + 269.3×10⁻³ L = 458.2×10⁻³ L
Concentration of
:
<u>Concentration of
= 0.7246 M</u>
Well you can freeze it to make it a solid then you can melt it to make it a liquid
I hope this helps you.
Answer:
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)

Explanation:
HCl and HNO₃ both dissociate completely in water. A simple method is to determine the number of moles of proton from both these acids and dividing it by the total volume of solution.
. V_{HCl}(L) \\ n_{H^{+} } from HNO_{3} = [HNO_{3}](\frac{mol}{L}). V_{HNO_{3}}(L)](https://tex.z-dn.net/?f=n_%7BH%5E%7B%2B%7D%20%7D%20from%20HCl%20%3D%20%5BHCl%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHCl%7D%28L%29%20%20%5C%5C%20n_%7BH%5E%7B%2B%7D%20%7D%20from%20HNO_%7B3%7D%20%20%3D%20%5BHNO_%7B3%7D%5D%28%5Cfrac%7Bmol%7D%7BL%7D%29.%20V_%7BHNO_%7B3%7D%7D%28L%29)
Here, n is the number of moles and V is the volume. From the given data moles can be calculated as follows






For molar concentration of hydrogen ions:
![[H^{+}] = \frac{n_{H^{+}}(mol)}{V(L)}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%20%3D%20%5Cfrac%7Bn_%7BH%5E%7B%2B%7D%7D%28mol%29%7D%7BV%28L%29%7D)
![[H^{+}] = \frac{0.761}{1.00}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20%5Cfrac%7B0.761%7D%7B1.00%7D)
![[H^{+}] = 0.761 \frac{mol}{L}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%200.761%20%5Cfrac%7Bmol%7D%7BL%7D)
From dissociation of water (Kw = 1.01 X 10⁻¹⁴ at 25°C) [OH⁻] can be determined as follows
![K_{w} = [H^{+} ][OH^{-} ]](https://tex.z-dn.net/?f=K_%7Bw%7D%20%3D%20%5BH%5E%7B%2B%7D%20%5D%5BOH%5E%7B-%7D%20%5D)
![[OH^{-}]=\frac{Kw}{[H^{+}] }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7BKw%7D%7B%5BH%5E%7B%2B%7D%5D%20%7D)
![[OH^{-}]=\frac{1.01X10-^{-14}}{0.761 }](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D%5Cfrac%7B1.01X10-%5E%7B-14%7D%7D%7B0.761%20%7D)
![[OH^{-}]=1.33X10^{-14}\frac{mol}{L}](https://tex.z-dn.net/?f=%5BOH%5E%7B-%7D%5D%3D1.33X10%5E%7B-14%7D%5Cfrac%7Bmol%7D%7BL%7D)
The pH of the solution can be measured by the following formula:
![pH = -log[H^{+} ]](https://tex.z-dn.net/?f=pH%20%3D%20-log%5BH%5E%7B%2B%7D%20%5D)

