Answer:
the heat given off is 75 J.
Explanation:
Given;
latent heat of fusion of lead, L= 25 J/g
mass of liquid lead, m = 3.0g
The heat given off is calculated as;
H = Lm
Where;
H is the quantity of heat given off
H = 25 x 3
H = 75 J.
Therefore, the heat given off is 75 J.
Answer:
<h2>Oxygen has six valence electrons, two in the 2s subshell and four in the 2p subshell.</h2>
<h3>Valence electrons are the electrons in the outermost shell, or energy level, of an atom. </h3>
<h3>Configuration of oxygen's valence electrons as 2s²2p⁴.</h3>
Explanation:
#Let's Study
#I Hope It's Help
#Keep On Learning
#Carry On Learning

The molecule with higher dipole moment is COFH because the geometry of the molecule in the COF2 nearly cancel the dipolar moment of each other. To be more clear:
The dipolar moment is the vectorial sum of all bond moments in the molecule or dipolar moment of each bond. The dipolar moment of a molecule with three or more atoms is determined by bond polarity as their geometry.
COF2 has a trigonal planar structure which are symmetric. The electronegativity of oxygen is slightly different regarding fluor. So as you can see in the image, the electronic density is specially displaced to the fluor atoms, but either to the oxygen atom.
COFH has a trigonal structure but differs from COF2 because there is an hydrogen who is donating it's electronic density, so in this zone the electronic density is less than over oxygen or fluor. That makes bond angles be different between them.
Answer:
Every oxidation must be accompanied by a reduction.
Explanation:
Oxidation and reduction are complementary processes. There can be no oxidation without reduction and vice versa. It is actually a given an take affair. A specie looses electrons which must be gained by another specie to complete the process. This explains why the selected option is the correct one.