That is FALSE. The equation to calculate the charges has a distance component that is in the denominator which means that it is inversely proportional (as the distance os greater the force is smaller)
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer:
a
The orbital speed is 
b
The escape velocity of the rocket is 
Explanation:
Generally angular velocity is mathematically represented as
Where T is the period which is given as 1.6 days = 
Substituting the value


At the point when the rocket is on a circular orbit
The gravitational force = centripetal force and this can be mathematically represented as

Where G is the universal gravitational constant with a value 
M is the mass of the earth with a constant value of 
r is the distance between earth and circular orbit where the rocke is found
Making r the subject
![r = \sqrt[3]{\frac{GM}{w^2} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7Bw%5E2%7D%20%7D)
![= \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B6.67%2A10%5E%7B-11%7D%20%2A%205.98%2A10%5E%7B24%7D%7D%7B%284.45%2A10%5E%7B-5%7D%29%5E2%7D%20%7D)

The orbital speed is represented mathematically as

Substituting value

The escape velocity is mathematically represented as

Substituting values


Answer:
4.6 kHz
Explanation:
The formula for the Doppler effect allows us to find the frequency of the reflected wave:

where
f is the original frequency of the sound
v is the speed of sound
vs is the speed of the wave source
In this problem, we have
f = 41.2 kHz
v = 330 m/s
vs = 33.0 m/s
Therefore, if we substitute in the equation we find the frequency of the reflected wave:

And the frequency of the beats is equal to the difference between the frequency of the reflected wave and the original frequency:
