Answer:
Different
Explanation:
The hollow one will expand even more making it have a larger volume then the solid one so they are different
Answer:
2 kg
Explanation:
Remember:
F = m * a re-arrange to
F/a = m substitute in the given values
10 / 5 = 2 kg
Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation:
Answer:
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. ... Forces only exist as a result of an interaction.
The velocity of the ball when it strikes the ground, given the data is 21.56 m/s
<h3>Data obtained from the question</h3>
From the question given above, the following data were obtained:
- Time to reach ground from maximum height (t) = 2.2 s
- Initial velocity (u) = 0 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) =?
<h3>How to determine the velocity when the ball strikes the ground</h3>
The velocity of the ball when it strikes the ground can be obtained as illustrated below:
v = u + gt
v = 0 + (9.8 × 2.2)
v = 0 + 21.56
v = 21.56 m/s
Thus, the velocity of the ball when it strikes the ground is 21.56 m/s
Learn more about motion under gravity:
brainly.com/question/22719691
#SPJ1