Heat<span> capacity ( C ) </span>does change with mass<span>. However, </span>specific heat<span> is the </span>heat<span>capacity per unit </span>mass<span> ( c=Cm ). Therefore if you double the amount of </span>mass<span> in your system, you've doubled its </span>heat<span> capacity, but you've kept the </span>specific heat<span> the same. ... </span>Specific<span> gravity is another such quantity.</span>
Answer:
down below
Explanation:
Since we aren't the given the time, lets say that an object to 25 seconds to fall 50 meters. We can use the formula [ s = d/t ] to solve.
s = 50/25
s = 2
Therefore, the object was falling at a rate of 2 meters per second.
Best of Luck!
Answer:
the average force 11226 N
Explanation:
Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.
Let's start looking for the stack speeds, it has a free fall, from rest (Vo=0)
Vf² = Vo² - 2gY
Vf² = 0 - 2 9.8 7.69 = 150.7
Vf = 12.3 m / s
This is the speed that the battery likes when it touches the beam. They also give us the distance it travels before stopping, let's calculate the time
Vf = Vo - g t
0 = Vo - g t
t = Vo / g
t = 12.3 / 9.8
t = 1.26 s
This is the time to stop
Now let's use the equation that relates the impulse to the amount of movement
I = Δp
F t = pf-po
The amount of final movement is zero because the system stops
F = - po / t
F = - mv / t
F = - 1150 12.3 / 1.26
F = -11226 N
This is the average force exerted by the stack on the vean