Answer: 1. halve
2. halve
3. double
Explanation:
The relationship between wavelength and energy of the wave follows the equation:

E= energy
= wavelength of the wave
h = Planck's constant
c = speed of light
Thus as wavelength and energy have inverse realation, when wavelength will halve , energy will double.
2. The between wavenumber and energy of the wave follows the equation:

E= energy

= wavenumber of the wave
h = Planck's constant
c = speed of light
Thus as wavenumber and energy have direct relation, when wavenumber will halve , energy will be halved.
3. The relationship between energy and frequency of the wave follows the equation:

where
E = energy
h = Planck's constant
= frequency of the wave
Thus as frequency and energy have direct realation, when frequency will double , energy will double.
Answer:
true
because with the both states we increase the surface of reaction
C) A laser beam looks bent when it passes through glass blocks.
Hope this helps!
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724