Answer:
Different types of isotopes are used for different materials or objects. For radiometric dating, uranium-235 is considered best for it while carbon-14 is used for dating of rocks. It is also used for dating of wood samples.
Explanation:
Carbon-14 and uranium-235 are used for different materials or objects for measuring the age of these materials. These two isotopes are radioactive in nature which means they emit gamma radiations which allow us to find the age of different objects. Carbon-14 has a low half life so it can be used for those objects which are present before thousands of years while uranium-235 is used for materials which are millions of years old due to high half life.
Answer. Metals are excellent conductors because the atoms in a metal form a matrix through which their outer electrons can move freely. Instead of orbiting their respective metal atoms, they form a "sea" of electrons that surrounds the positively charged atomic nuclei of the interacting metal ions
An ionic compound is formed between a metal and a non metal. The metal being electropositive can form a cation by transferring the electron to the electronegative non metal that gains the electrons to form an anion. Both the elements try to get a stable octet configuration by the transfer of electrons. The number of electrons lost by metal will be equal to the number of electrons gained by the non metal. Hence, the magnitude of positive charge on the cation will be equal to the magnitude of negative charge on the anion. Therefore, the overall charge on the compound will be 0
So the correct answer is the sum of all charges in the formula for an ionic compound is 0
Answer:
N2O(g) + 3 H2O(l) ---------------> 2 NH3(g) + 2 O2(g)
Explanation:
If we look at the reaction stated in the question, we will notice that the option chosen in the answer is the reverse of that reaction.
One thing is clear, if a reaction is possible, then its reverse reaction is equally possible. The equilibrium position may shift towards the forward or reverse reaction based on the conditions of the reaction.
Hence if the reaction, 2NH3(g) + 2O2(g) → N2O(g) + 3H2O(l) is possible, then the reaction, N2O(g) + 3 H2O(l) ---------------> 2 NH3(g) + 2 O2(g) is also possible.