Ribosomes hope this helps if not oh well
Albert Einstein showed in one of his papers in 1905 that Brownian motion could be explained by assuming that matter is made up of tiny particles. His paper predicted how the motion should look like and also allowed for the calculation of the mass of a single molecule.
Current evidence includes:
1. Individual ions (atoms with an electric charge) can be manipulated using electric and magnetic fields.
2. Elevation maps can now be made that show bumps caused by individual atoms.
We can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = 303.15 x 300 / 333.15
<span>V2 = 272.99 cm³</span>
<span>PV=nRT= a universal constant
For any condition
P1V1/n1T1=R
and
P2V2/n2T2=R
i.e
P1V1/n1T1=P2V2/n2T2
Becomes
V1/n1=V2/n2
rearranging and solving
V2=V1X(n2/n1)= 750 mLx((0.65+0.35)/(0.65))=1200ml=1.2L...2 sig figs</span>
This is because temperatures determine the kinetic energy of molecules of a substance, At lower temperatures the molecules have low kinetic energy hence the distance between molecules is not as large as when the kinetic energy is higher (because the molecules bombard less and with less kinetic energy). This means the substance can pack more molecules per volume at lower temperatures. The more the molecules per volume the higher the density.